7-1 Integral as Net Change

Learning Targets

Given a differenal equaon, I can use integraon to find a net change in a real world situaon.

Given a differenal equaon and a starng value, I can use integraon to find a the ending value in a real world situaon.

Example 1:
$$\frac{ds}{dt} = v(t) = t^2 - \frac{8}{(t+1)^2} \frac{cm}{\sec}$$

is a velocity funcon on $0 \le t \le 5$

- Graph the velocity for
- Describe the moon.
- What is the parcle's posion at me t=1 sec and at t=5 sec if s(0)=9? $\int_{0}^{\infty} \frac{(t^{2}-\frac{8}{(t+1)^{2}})}{(t^{2}-\frac{8}{(t+1)^{2}})} dt = -3.667$ 9-3.667=5.333What was the total distance travelled from t=0 to
- t=5? \[\sigma^5 \| v(t) \| dt = \(4a.587cm \)

Integral as a Net Change

If f is a connuous and differenable funcon over [a,b], then

$$f(b) = f(a) + \int_{a}^{b} f'(x) dx$$
final position + displacement

And the integral $\int f'(x)dx$ tells you how much the funcon has changed from a to b.

Example 2:

- Find the absolute maximum of f(x) on [-6,7].
- Find the absolute minimum of f(x) on [-6,7].

Homework

p. 386 #10-16, 19-22, 31-36